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ness, can result in very different behavior. Furthermore, secondary factors such as the pre-

sence or absence of moisture, the severity of prior compaction, the ambient temperature, etc.,
which are not associated directly with the particles, can have significant effects on the beha-

vior of the bulk solids.
Although the fluid phase plays an importent role in determining the dynamics of dilute

suspensions, it does not have much influence on bulk solids behavior. That is, when the solid
phase is dominant, the behavior of the bulk materials, in general, is governed by interparticle
cohesion, friction, and collisions. In some cases the effects of the interactions between the
fluid and solid constituents may be small because the interstitial fluid has relatively small den-
sity and viscosity (e.g., a gas). When the effects or the presence of the fluid phase cannot be
ignored, then one has to resort to multiphase or multicomponent modeling, by considering
the interaction mechanisms between the two phases.
.A powder is composed of particles up to 100 J1,m (diameter) with further sub-division into

ultra fine (0.1 to 1 J1,m), sup~rfine (1 to 10 J1,m), or granular (10 to 100 J1,m) particles. A granular
solid consitsts of materials ranging from about 100 to 3000 J1,m [13]. A granular material covers
the combined range of granular powders and granular solids with components ranging in size
from about 10 J1,m up to 3 mm. This range includes most of the materials used in laboratory
experiments and whenever we use the term granular material we shall henceforth refer to this
range. Brown and Richards [13] define a bulk solid as: "An assembly of discrete solid components
dispersed in ajluid such that the constituents are substantially in contact with near neighbors. This
definition excludes suspensions,jluidized beds, and materials embedded in a solid mixture."

The basic and fundamental question in modeling the granular materials is whether a single
constitutive relation for the Cauchy stress tensor T is sufficient to describe the various flow
regimes and geometries. In addition to this, whether one decides to use classical continuum
theories or a modified version of kinetic theory of gases as applied to solid macroscopic mate-
rials, or computer simulation based on particle dynamics [14], or experimental observations
leading to phenomenological relations for the stress tensor [15], etc., has added to the com-
plexity and diversity of this field of research, by producing many different forms for the stress
tensor. At the present time, there is no unified theory for granular materials.

Any theory attempting to describe the behavior of flowing granular materials should
embody several features, some of which are unique to granular materials. For example, a bulk
solid is not exactly a solid continuum since it takes the shape of the vessel containing it; it can-
not be considered a liquid for it can be piled into heaps; and it is not a gas for it will not
expand to fill the vessel containing it. Perhaps the phase that the bulk solids most resemble is
that of a non-Newtonian fluid. Therefore, it seems reasonable.to expect a theory for flowing
granular materials to exhibit characteristics unique to viscoelastic fluids such as the normal

stress effects.
From a continuum mechanics point of view, there are many different approaches that one

can take. From the observation/experimental point of view, the pioneering work of Bagnold

[16], [17] has led to many formulations of non-Newtonian models [18], [19], [20], [21], [22],
[23]. For a review of this aspect of the modeling activities we refer the reader to the recent arti-

cle by Elaskar and Godoy [24]. The fact that granules can flow has prompted many investiga-
tors to look at the flow of particles as a fluid phenomenon, even as a compressible fluid [25],
[26], [27]. At the same time, there have been many attempts to formulate or to propose rate-
independent theories [28], plasticity theories [29], viscoelastic theories [30], hypoplastic the-
ories [31]. Theories with microstructure have also been proposed [32], [33], [34], [35]. There
have.also been attemps to include the effect of "fluctuation" of the particles into the stress ten-

sor formulation [36], [37]. At the same time, others have shown the similarity between the
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rapid flows of granular materials and the turbulent motion of a fluid [38], [39]. A general
continuum theory with thermodynamical restrictions was proposed by Goodman and Cowin
[40], [41]. This work has subsequently been modified, extended, and generalized by various
researchers [42],[43], 1M].

The outline of this paper is as follows: we first review, very briefly, some basic concepts
such as yield criteridn and dilatancy in granular materials. These are primarily non-linear
effects which might be present in non-linear solids and/or non-linear fluids. Next we will look
at a continuum model first proposed by Cowin [45], and later modified by Savage [20] (and
many others). The sp~ific version that is studied in this paper is the one proposed by Rajago-
pal and Massoudi [1]. In the last section, we will look at the effects of imposing or expecting
this model to comply with Mohr-Coulomb criterion and dilatancy. There are many excellent
review articles where many of the important issues relevant to granular materials are dis-
cussed. These recent articles take a general perspective and present a review of statistical the-
ories (kinetic theory of gases, computer simulation) and continuum theories. We refer the
reader to the articles by Nedderman et al. [12], Savage [3], Hutter and Rajagopal [46], Jaeger
et al. [47], de Gennes [48], Hermann and Luding [14], and the book by Mehta [49].

1.1 Cohesionless and cohesive materials

The mechanical properties of materials such as soils range between those of plastic clay [50]
and those of clean, perfectly dry sand. Slopes of all kinds, including river banks and sea coast
bluffs, hill, mountains" etc., remain in place because of the shearing strength possessed by the
soil or rock. If we dig into a bed of dry (or completely immersed) sand, the material at the
sides of the hole would slide toward the bottom. This behavior indicates a complete absence
of a bond between the individual particles [51]. This sliding continues until the angle ofincli-
nation of the slopes becomes equal to a certain angle known as the "angle of repose." Brown
and Richards [13] define two angles of repose as:

"The angle to the horizontal assumed by -the free surface of a heap at rest and obtained
under stated conditions:

( i) the poured angle of repose is formed by pouring the bulk solid to form a heap below the

pour point.
(ii) The drained angle of repose isformed by allowing a heap to emerge as superincumbent pow-

der is allowed to drain away past the periphery of a horizon tal flat platform previously bur-
ied in the powder."

Various techniques to measure the angle of repose are given by Weighardt [4]. Very often
it is taken for granted 'that the angle of repose, 'Y is the same as the angle of internal friction,
rjJ. Theory can only say that the slope of the pile of sand cannot be steeper than rjJ, or 'Y ~ rjJ.
This internal angle of friciton is related to the amount of cohesion present in the material. In
simple terms, the bond between the particles, cohesion, is influenced by a variety of forces
including Van der Waals' forces, Coulomb forces, and capillary forces [52]. A definite angle
of repose cannot be as~igned to a granular material with cohesion, since the steepest angle at
which such a materia~ can stand decreases with increasing height of the slope [51]. The
mechanical properties of real granular materials are so complex that a rigorous mathematical
analysis of their behavior seems impossible. Therefore, many branches of applied mechanics,
such as theoretical soil mechanics deal exclusively with the behavior of idealized granular
materials ranging from ideal sands (cohesionless granular material) to ideal clays (ideally
cohesive meterial, i.e., ~o internal friction) [53], [54].
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To have a better understanding of the physical interpretation of the angle of internal fric-
tion, we envision a block of solid material resting on an inclinded plane at an angle cP with the
horizontal line. If the block is to slide on the surface, we must have

PI = Pn tan 4> (1)

where Pn is the normal force acting on the block, PI is the friction force, 4> is the angle of
friction and tan 4> is the coefficient of friction. The characteristic 4> is a property of the materi-
als that are in contact.

In sands and other cohesionless granular materials, a similar relationship exists between
the force required to overcome all frictional resistance and cause slip on a plane through a
mass of granular material. This relation can be written as [55]:

(2)P. = Pntanl/>,

where Pn is defined as the normal force on the plane subject to slip, <I> is now called the inter-
nal angle of friction, and Psis the shearing force that causes yielding. Of course, the frictional
resistance in granular materials is more complex than that between solid bodies, since it is due
to both sliding friction and rolling friction.

1.2. Mohr-Coulomb criterion

A criterion often used when devising theory for the flow of granular materials is that the equi-
librium states specified by the theory are required (or are shown) to coincide with the limiting
equilibrium states specified by the Mohr-Coulomb criterion. The Coulomb failure criterion
[56], [57], [58] based on experiments, state that yielding will occur when

181 = bT+c,1 (3)

where Sand T are the shear stress and normal stress, respectively, acting on a plane at a
point; c isa coefficient of cohesion; and b is a coefficient of static friction related to the inter-

nal angle of friction IjJ through

b=tanljJ. (4)

When cohesion is absent (c = 0), it is usual to call a granular medium an ideal one. One in
which internal friction is absent «p = 0), is called an ideally cohesive medium. For dry, coarse
materials, the cohesion coefficient can be neglected. Typical values for the internal angle of
friction <p, obtained during quasi-static yielding at low stress levels are close to the angle of
repose, e.g. about 240 for spherical glass beads and 380 for angular sand grains [13].

1.3 Dilatancy

A unique property of granular materials was observed by Reynolds [59] who named it "dila-
tancy". The concept of dilatancy is generally taken to be the expansion of the voidage that
occurs in a tightly packed granular arrangement when it is subjected to a deformation. Rey-
nolds [59] used the idea of dilatancy in describing a familiar phenomenon in sand:

"At one time the sand will be so firm and hard that you may walk with high heels without
leaving afootprint; while at others, although the sand is not dry, one sinks in so as to make walk-
ing painful. Had you noticed, you would have found that the sand is firm as the tide falls and
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becomes soft again after it has been left dry for some hours. The tide leaves the sand, though

apparently dry on the surface, with all its interstices perfectly full of water which is kept up to

the surface of the sand by capillary attraction; at the same time the water is percolating through

the sand from the ;sands above where the capillary action is not sufficient to hold the water. When

the foot falls on this water-saturated sand, it tends to change its shape, but it cannot do this with-

out enlarging the interstices -without drawing in more water. This is a work of time, so that the

foot is gone again before the sand has yielded."

Many of the existing theories for flowing granular materials use this observation to relate
the applied stress to the voidage and the velocity. One of the first and most interesting obser-

vations of the realtionship between the stress in granular materials and voidage was also given

by Reynolds [60]:

"Taking a small indiarubber bottle with a glass neck full of shot and water, so that the water

stands well into the neck. If instead of shot the bag were full of water or had anything of the nat-

ure of a sponge in it, when the bag was squeezed, the water would be forced up the neck. With the

shot the opposite result is obtained; as I squeeze the bag, the water decidedly shrinks in the

neck. ..When we squeeze a sponge between two planes, water is squeezed out; when we squeeze
sand, shot, or granular material, water is drawn in. "

The idea of dilatancy of granular materials can be simply explained for an idealized case:
in order for a shearing motion to occur in a bed of closely packed spheres, the bed must

expand by increasing its void volume (cf. Fig. 1). The work of Reynolds was followed by the
experimental studies of Jenkin. [61], Rowe [62], Andrade and Fox [63], Reiner [64], and [Bol-
ton [65] to name a few. Many attempts have been made to include the effects of dilatancy in
the theory (Nixon and Chandler [66] for a plasticity theory, Mehrabadi et al. [67] from a
micromechanical point of view, Goddard and Bashir [68], and Goddard [69] from a rheologi-
cal perspective). In fact, Reiner [18] was one of the first who used a non-Newtonian model to
predict "dilatancy" in wet sand.

2 Objectives

Firstly, we present the development of a constitutive relation for the stress tensor due to Raja-
gopal and Massoudi [I], and then show that with this representation it is possible to observe
the dilatational effiects. This is due to the nonlinear terms in the constitutive equation which

Fig. 1. An illustration of dilatancy in
an ensemble of initially close-packed

spheres
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,U-:If give rise to the normal stress effects. Secondly, we show that if we relate some of the material
parameters in this constitutive equation to cohesion and internal angle of friction, this model
is also capable of complying with a (limited) form of the Mohr-Coulomb criterion, as pointed
out by Cowin [2]. To show the presence of normal stress differences, we solve a simple shear
flow problem and present an exact solution for a special case. This model was also used by
Rajogopal et al. [44] in their study where they proposed to use an orthogonal rheometer to
measure some of these (rheological) parameters.

2.1 A constitutiver relation for the stress tensor

In this section, we give a simple derivation, based on standard techniques of continuum
mechanics, for the stress tensor. This is a modified form of an equation which was proposed
by Goodman and Cowin [40], [41], subsequently revised and modified by many researchers
[cf. Hutter and Rajagopal [46] for a review of theories for granular materials]. Unlike Good-
man and Cowin who also tried to use thermodynamical arguments, our presentation will be
limited to a purely mechanical case, where the effects of temperature, chemical reactions, and
electromagnetic effects are all ignored. We assume

T= T(e,grade,u,gradu), (5)

where e is the bulk density of the material, and u is the velocity. The bulk density e is related
to the pure density of the material e. through

e = e.v, (6)

where v(x, t) is a volume distribution funciton (sometimes called volume fraction of solids).
The motion of the body and the process of homogenization are shown in Fig. 2. Application
of the principle of material frame-indifference (cf. Truesdell and Noll [70]) to Eq. (5) implies

T= T(e,grade,D), (7)

where D is the symmetric part of the velocity gradient,

D = ~ [gradu + (gradu)T]. (8)
2

Defining a symmetric tensor, of rank 2, N as

N=grade~grade, (9)

an isotropic representation ofEq. (7) is (cf. Serrin [71], Truesdell and Noll [70], Spencer [91])

T = ~1 + aID + a2N + a3D2 + a41\f.! + as(DN + ND)

+ ~(D2 N + Nn2) + a7(D1\f.! + 1\f.! D) + as(n21\f.! + 1\f.! D2) , (10)

! = !. (!,I)

Mollon

Homogenilallon

Vto: Distributed Volume

Vo: Totel Volume
110: Reference Configuration

vo: Volume of Granules

Vo: Total Volume

.(!.I)
V (!)
" (!.t)
2t: Pro.ont Configuration

Fig. 2. Motion of the body
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where ao through 018 depend on [91]

e,tr D,tr D2,tr D3,tr N, tr 1\f2, tr N, tr (DN),
(11)

tr (D1\f2), tr (ND2),tr (D21\f2) .

Assuming that all the terms that have cross products of D and N and terms of order higher
than two in D and N can be neglected, Eq. (10) reduces to

T = aol + aID + a~N + a3D2 + a41\f2 (12)

where ao, aI, ..., etc., are now functions of only the appropriate invariants in keeping with
the above assumptions.

Observing that

tr N = grad U. gradU = Igrad uI2

f'Il = (tr N) N

Eq. (12) therefore can be re-written as

T= aol + alD+ [a~ + a4(tr N)]N + a3D2, (15)

where ao -a4 depend on the appropriate invariants given by Eq. (II). As it is, Eq. (15) repre-
sents a general nonlinear constitutive relation for a material which is flowing and distributing
(i.e., re-arranging) itself as it is flowing. If, for simplicity we assume:

ao = fJo'(e) + !31'(e) 'V e. 'V e + f32'(e) tr D,

al = !33'(e), (16)

~ + a4(tr N) = !34'(e, 'Ve),

as = !3s'(e) ,

then Eq. (15) can be re-written as:

T = [.Bo'(Il) + .Bl'(Il) 1\711.1\711 + f32'(Il) tr D] 1 + .B3'(1l) D + .B4'(1l, '\l 11) + .Bs'(Il) D2

~

A similar expression was proposed by Korteweg to describe the structure of capillarity. The
classical theory of capillarity specifies a jump condition at the surface separating homoge-
neous fluids possessing different densities. Instead, Korteweg (1901) (cf. [70]) proposed a
smooth constitutuve, relation for the stress that depends on density gradients. This equation is
given in Truesdell and Noll [70]: ,

T= -pI + >..(tr D) ~ +-y(L1{!) 1- a("il{!. "il{!) 1 + 2JLD -fJ"il{!@ "il{! + 6"il("il{!), (18)

I

where L1 is the Laplacian operator, p, >., Ji" a, {3, 'Y, and 15 are functions of (! and temperature.
Of course, Eq. (18) does not resemble Eq. (17) i~ that the terms involving L1{! and V(V{!) are
higher order terms. ~n order to get these terms within the context of our derivation, we would
have to assume in Eq. (5) that T also depends on grad (grad (!).

Now, if the grains are incompressible in the sense that their pure density is constant, i. e.,
{!s = constant, then, we can use Eq. (6) in Eq. (17) and obtain

T= 

[[30(v) + .81 (V) ~V.VV+ .82 (V) tr D] 1 + fJ3(V) D + .84(V, ViI) Vv@Vv+.85(v)D2
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where the material moduli are now functions of v. To this equation, Rajagopal and Massoudi

(1990) have given the following interpretation: the material moduli .83(V) denotes the viscosity
(i. e., the resistance of the material to flow): .81 (v) and .84(V) are material parameters that
reflect the distribution of the granular solids; and f30(v) plays the role akin to pressure in a
compressible fluid and is given by an equation of state. The material modulus f32(v) is again a
viscosity similar to the second coefficient of viscosity in a compressible fluid, and .8s(v) is simi-

lar to what is referred to as "cross-viscosity" ina Reiner-Rivlin fluid [18], [72].
Since there are many material parameters involved, it is essential to devise experiments

that will help measure these material moduli. Rajagopal and Massoudi [1] discussed a method
for determining these material moduli by using an orthogonal rheometer. The orthogonal rhe-
ometer essentially consists of two parallel plates rotating about non-coincident axes with the
same angular speed. Because of normal stress differences that develop in the granular materi-
als owing to such a motion, forces and moments are necessary to keep the two plates apart at
a constant distance. By measuring these forces and moments, we can characterize the moduli
of the material. Such as instrument has been used to characterize the material moduli of vis-

coelastic fluids.
In the next section, we look at the behavior of a material whose constitutive relation is

given by Eq. (19) in a simple shear flow. A discussion for possible dependence at f3o -.8s will

also be provided.

2.2 Simple shear flow

Let us consider a simple shear flow. The velocity field u and the volume function 11 are

assumed to be of the form (cf. Fig. 1)

u = u(y)i, (20)

11 = 1I(Y) .

It then follows that

(0 u' 0'

u' 0 0
,0 0 0)

( (u')2

0

, 0

1
D=2

(21)

0 0\

(U,)2 0

0 01

(22)

(23)

(24)

Also, notice that

Vv.Vv= (~)2

trD=O,

(25)

(26)
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~

ebz = 0

We shall now make some assumptions on the material functions (30(11), (31(11), ...etc. We
expect that these functions would decrease monotonically with II. We mentioned earlier that
(30(11) plays a similar role to that of the pressure in a compressible gas P(u), with II now play-
ing the role of density. Assuming a form similar to that for ideal gases leads us to conclude
that fJo varies linearly with II [see Rajagopal and Massoudi [1] for a simple derivation, where
they use the idea of densification of the material in the lower regions]. The works of Walton
and Braun [73], [74] assume that the viscosity is a function of both the solid fraction II and the
tensor D, and varies as a quadratic function of II, with D being held fixed. However, the work
of Jenkins and Savage [75] based on kinetic theory suggests that .u is nearly linear in II.

We shall assume that both (33(11) and (35(11) are quadratic in II. Thus, let

(33(11) = (330 + (33111 + (332112, (33)*

* Other forms of this relationship have been proposed, based on experiments, by other investigators. For
example, Savage [20] used I-' = 1-'1 [(Vm -VO)/(Vm -v)]8 where 1-'1 is constant, Vm corresponds to the den-
sest' possible concentration and Vo is the concentration at which fluidity occurs. Passman et al. [76] used

I-' = (1-'1v2)/(vm -v)2 where 1-'1 is a constant.

Therefore, we can see from Eq. (27) and (28) that the material exhibits both normal stress dif-
ferences. If either the term /3s(V) & or .B4(V) Vv 18) Vv were absent from the constitutive
expression in Eq. (19), the model would be capable of exhibiting only one of the normal stress
differences. For example, in an idealized shear flow, it is possible to have constant solid
volume fraction. In such a case the term corresponding to /34(V) Vv 18) Vv vanishes and only
one of the normal stress differences, Eq. (28), remains.

As we mentioned in the previous section, the fact that the normal stress differences are
nonzero, implies that this model can predict the dilatational effect observed by Reynolds.
Having said this, let us see if we can obtain an exact solution for the flow field, given by Eq.
(20). We notice that the conservation of mass is automatically satisfied.

The balance of linear momentum is

div T + Ub = U ~ ' (29)

where b is the specific body force field, and dj dt denotes the material time derivative. On sub-
stituting Eq. (19) and (21)-(25) into Eq. (29), we obtain

d
[1 d'U ] .

dY 2" /33(V) dY + ubz = 0, (30)

~ {fJo(V) + [/31(1)) +/34(V)] (~) 2 +~ (~) 2} + uby = 0, (31)

where bz, by and bz are the components of the external body force. Thus, we see that a motion
of the form in Eq. {20) is only possible if the z-component of the body force field is zero.





131

A continuum model for granular materials

where 01 and ok are constants. Equations (44) and (45) admit the solution

ay

constanta

constant

However, the system of Eq. (44) and (45) is nonlinear and might admit additional solutions.
Also, in general, we would like to assume that the material moduli have the more general
representation of Eqs. (33) -(39) subject to the constraint (40). In this case, Eq. (30) and (31)

would have to be solved numerically. Once u and v are determined, we can use Eq. (26), (27),
and (28) to find the normal stress differences, and the shear stress function. If these can be
measured experimentally, we could use them to determine the material properties {:la, {:l4, and
{:l5. Of course, the above problem is only an illustration in which we have assumed a very spe-
cific structure for the material functions and have ignored the body force field. However, in

principle, we could use a similar procedure for other problems.

2.3 The Mohr-Coulomb criterion

The interpretation that we have given.to the material parameters f3o -,B5 in Eq. (19) in the
previous section is a rheological one. However, if the material has not started to flow, the
question of yielding and the onset of the flow remains. To look at this issue, as suggested by
others [2], [20], [7.7], [78] we decompose the stress tensor into an equilibrium (or static) part
and a dynamic part. Thus, we re-write Eq. (19) as

(48)TdT Te

where

T,

Td

[,80 (v) + /3f(v) Vv. Vv] 1 + /34 Vv 18> Vv

[/32 (V) tr4] 1 + /33 (V) D + /35 (V) D2.

It should be remarked that we have not given a rigorous definition of the 'equilibrium' stat!
We understand the term "equilibrium" in the sense that as D -+ 0, T -+ Teo

Cowin [2], [45] and Savage [20] showed that the stress T e, specified by the following equation

q) 1 2aMTe (ccotcf>

satisfies the Coulomb failure criterion. In Eq. (51)

52)trM1a\~q

where a, c, and if> depend upon 110, II, and tr D, and Mis given as M = VII @ VII. The coefficient

c is related to the cohesive properties of the material and 1> is the internal angle of friction.
Though Eq. (51) is required to agree with the Mohr-Coulomb (or limiting equilibrium) cri-

terion as D -+ 0, it is basically considered that this equilibrium limit is essentially different
from that when flow occurs, however slowly. Savage [20] showed that in a rough-walled chan-
nel with an angle of inclination slightly less than the angle of repose, granular materials of uni-

form depth stay motionless in the absence of an external disturbance. However, giving a slight
push the material is made to flow slowly but continuously at constant depth. It is, therefore
evident that two different flow states exist at the same angle of inclination (but in general at
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Now, let

s = -~ IVvf ,

(59)

then, Eq. (58) can be re-written as

~ + (T -t)2 = 82,1

where if we consider Sand T as Cartesian coordinates, we can see that Eq. (60) represents the
,

equation for a circle! centered at S = 0 and T = t, with radius s.

So far, the only thing we have said about /30, /31, and /34 is that in 'equilibrium', they can
depend on II. How these material properties are related to the actual physical parameters is
another issue. Cowin [2], [45] and Savage [20] have provided some physical insight about the
nature of /30 and ,81' That is, since the material, prescribed with its constitutive relation T e is
to comply with the' Mohr-Coulomb Criterion, then somehow ,80 amd ,81, and possibly /34
should be related to cohesion and internal angle of friction. Thus, if we let

(61)

and eliminate the te11nl .B4/2IVvI2, in Eq. (59), between sand t, we have

s=sinq,(ccotq,-t).

Recall

s=ISI/coscj>,

t=T-ISltancj>,

then Eq. (62) can be re-written as

181 = c -TtancjJ (64)

which is the same a~ Eq. (3), except for the negative sign which stems from the fact that we
have assumed tensil~ stresses are positive. Therefore, we can see that with the interpretation
of /30 and /31 given qy Eq. (61), the constitutive relation proposed in this paper, Eq. (19), is
also complying with the Mohr-Coulomb criterion.

3 Summary

In this paper we ha\1e tried to present the derivation of a constitutive relation for the stress
tensor for granular materials, based on standard arguments in continuum mechanics. The
equation has at least five material parameters which are undetermined. Due to the nonlinear
terms the model is capable of predicting normal stress differences, which within the context of
granular materials b~omes the "dilatancy" phenomenon, known since Reynolds [59] and
Reiner [18]. At the s~me time, we have proposed a quadratic dependence of these material
parameters on volume fraction. (An alternative way is to take a kinetic theory approach and
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try to find the exact dependence of these material parameters on primary variables. This study
was taken up for this particular model by Boyle and Massoudi [79] and will not be discussed
here). Appropriate restrictions such as a "limiting principle" and "densification in the lower
regimes of the flow," provide further restrictions on these material parameters. In addition to
these, if we require that the material is to comply with the Mohr-Coulomb criterion, then some
of these material parameters would have to be given a different interpretation in such a way
that they are now related to the internal angle of friction and the "cohesiveness" of the material.

In certain industrial processes such as flows in hoppers and bins [80], and fluidization, the
solid particles are initially in static equilibrium. Then the flow slowly starts, due to action of
gravity as is the case for bins and chutes, or due to the upward flow of a fluid in a fluidized bed.
In the case of fluidization [81], the bed slowly expands. At this stage the yielding begins and the
particles are no longer in static equilibrium. Frictional and sliding forces are the main deterrents
to the flow. As the bed becomes fully fluidized, the particles begin to collide with each other and
they move about rapidly. At this stage, the viscous and the interaction forces are the dominant
mechanisms for flow. It is difficult to come up with a single constitutive relation which can
cover the whole field of operation. In reality, in the regime where particles are colliding with
each other, the fluid phase plays an important role, and thus the present model should only be

used within the context of a multi phase mixture theory [82], [83].
Before we proceed to make a few comments about this and other similar models, for brev-

ity we present the results here. The basic equation for the stress tensor is Eq. (19):

T = [f30(v) +.81 (v) \7v, \7v + f32(v) tr D] 1

+ .83 (v) D+ .84(V, \7v) \7v 18) \7v + .8s(v) ~ , (19)

~

where if the material is "fully" flowing, the following representations are proposed for the {3's:

(35)

(37)

(38)

(33)

(39)

(34)

fJo(V) = "IV,

(3l(V) = (310 1t (3uv + (3l2V ,

f32(V) = .Bozo 4- f32lV + f322V ,

fJ3(V) = /3so + fJ3lV + (332V ,

(34(V) = (340 + (341 V + (342V ,

(35 (V) = /351 + (35lV + (352V ,

where

(40).830 = .820 = .850

due to the "limiting principle." In their studies, Rajagopal 6t al. [84] proved existence of solu-
tions, for a selected range of parameters, when,

.81+.84>0

Xl < o.
(65)

For other rheological parameters, i.e., /32, {J3, and {Js, we can use the experience in the
mechanics of non-Newtonian fluids to find out more information about the signs. Obviously,
since {J3 is related to the shear viscosity, we assume it is positive. Perhaps a thermodynamic or
a stability analysis would reveal further information about the signs and the relative impor-

tance of these parameters~
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